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Abstract

Invasive species are posing significant ecological, socio-economic, and human health 
threats to our society. It is imperative to accurately predict the potential occurrences of 
invasive species for management to concentrate efforts on prevention, early detection, 
and swift response. This study aims to employ various ML algorithms to forecast the 
likelihood of invasive species occurrences based on habitat preferences. The study 
compared the prediction accuracies of three ML algorithms: Random Forest, Logistic 
Regression, and Gaussian Naive Bayes. The analysis utilized data collected from twelve 
lakes located in the Adirondack region of Upstate New York. The outcomes of the study 
reveal that the Gaussian Naive Bayes model exhibited markedly higher accuracy levels 
compared to both the random forest and the logistic regression model. These findings 
highlight the effectiveness of the Gaussian NB model in predicting invasive species 
occurrences, underscoring its potential as a valuable tool for proactive management and 
conservation efforts.
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1. Introduction

An invasive species is a non-native species whose introduction causes or is likely to cause 
economic, environmental, or human health harm, or threatens to disrupt the current 
balanced ecosystem (Executive Order 13751). It can be any kind of living organism: 
plant, insect, fish, bacteria, fungus, or even an organism’s seeds or eggs. It can infiltrate 
new environments through various means. Many invasive species are introduced into a 
new region accidentally and a lot of times, by human beings. The era of globalization has 
significantly amplified both long-distance travel and trade, thereby escalating the 
incidence of non-native flora and fauna being brought into different ecosystems 
worldwide.
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Invasive species can impact both the native species living within an ecosystem as well as 
the ecosystem itself. They can change the food web, compete with native organisms for 
limited resources, cause the extinction of native plants and animals, and reduce 
biodiversity1. (e.g. Vilà et al., 2011), and alter ecosystem functioning2 (e.g. Pejchar & 
Mooney, 2009). Numerous studies have shown the negative effect of invasive species on 
native biodiversity. Some of them concentrated on the genetic level such as how the 
breeding process (specifically, males and females of two different species were bred 
together) affected biodiversity3,4 (Largiadèr 2008; Kumschick et al. 2015). Other studies 
have demonstrated the negative effect from the ecosystem level5,6  (Lazzaro et al. 2020; 
Viciani et al. 2020).

According to the National Wildlife Federation, approximately 42 percent of threatened or 
endangered species are at risk due to invasive species. In the United States, the annual 
estimated economic and health-related costs of invasive species have been reported at 
more than $21 billion (United States geological survey).

Aquatic invasive species (AIS) have inflicted significant ecological harm on freshwater 
ecosystems7,8 (Ricciardi and MacIsaac 2000, Cucherousset and Olden 2011), 
underscoring the need for a more proactive approach to invasive species management9,10

(Leung et al. 2002, Pagnucco et al. 2015). The identification and effective management of 
invasive species relies on an accurate prediction of locations and environment favorable 
to non-native species for them to survive, establish, reproduce, and spread11 (Kramer et 
al. 2017).

However, ecological data are often high dimensional with nonlinear and complex 
interactions among variables, and with many missing values among measured variables12

(Sabat-Tomala et al. 2020). Traditional statistical approaches can encounter difficulties in 
extracting meaningful analyses from such data. Linear statistical methods, such as 
generalized linear models (GLMs), in particular, may prove inadequate for revealing 
patterns and relationships that can be unveiled by more advanced techniques13 (De’ath 
and Fabricius 2000).

Among the statistical techniques frequently utilized in ecology, classification procedures 
stand out as some of the most widely adopted, finding applications in tasks such as 
remote sensing-based vegetation mapping14 (Steele 2000) and species distribution 
modeling15 (Guisan and Thuiller 2005). In recent years, classification trees16 (Breiman et 
al. 1984) have gained widespread popularity among ecologists due to their 
straightforward interpretability, exceptional classification accuracy, and capacity to 
characterize complex interactions among variables.

The main objective of this study is to construct several different machine learning models 
and use these models to classify the known species and unknown species (classified as 
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“other”). I then use these classified labels to analyze the population for each category. 
Based on the population change in the temporal dimensions data, we will be able to 
predict whether or not new invasive species have occurred in a particular region. The 
three models we selected were Random Forest, Logistic Regression, and Gaussian Naive 
Bayes.

2. Results

The prediction accuracy of all three AI algorithms is listed in Table 1 and Table 2.

Table 1: Comparison of results on a dataset including all NaN values

Random Forest Logistic Regression Gaussian NB

Unbalanced 95.20% 36.36% 29.18%

Balanced 35.11% 50.56% 81.23%

Table 2: Comparison of results on dataset excluding all NaN values

Random Forest Logistic Regression Gaussian NB

Unbalanced 99.35% 98.12% 96.14%

Balanced 99.89% 80.80% 95.16%

All three models were trained both unbalanced (with equal weight on all labels) and 
balanced (with greater weight on non-NaN labels). In each scenario, each was trained first 
with all NaN values included, and then with all NaN values excluded.

In comparison, including all NaN values, random forest yielded the highest unbalanced 
accuracy, followed by Logistic regression, then by Gaussian NB. However, random forest 
yielded the lowest balanced accuracy, whereas Gaussian NB yielded the highest balanced 
accuracy.

Excluding all NaN values, random forest yielded the highest unbalanced accuracy, 
followed by Logistic regression, then by Gaussian NB. Random forest also yielded the 
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highest balanced accuracy, followed by Gaussian NB, then by Logistic regression.

At the same time, occurrences of different species were analyzed according to specific 
features in order to analyze where in a region each species is most likely to inhabit. 
Figures 2 and 3 below showed occurrences of each of the four species and the “Other” 
new species based on distance from shore and depth, respectively. The graphs were 
created using Python’s Matplotlib and Seaborn libraries. Matplotlib allowed for the 
creation of various graphs when analyzing the data used in the study. Through Matplotlib, 
histogram graphs were generated, based on how many times each species appeared with 
each feature.
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Figure 2. Occurrences of species based on distance from shore (the x-axis represents the distance from 
shore in meters, while the y-axis represents occurrences of species.)

Figure 2 showed that species Asian Clam were found closest to the shore, with most 
occurrences appearing less than 0.5 meters from the shore. The Spiny Waterflea had the 

5



most occurrences appearing between 0.25 and 0.3 meters from shore, while most 
occurrences of other, non-specified species in the data occurred at about 0.15 meters. 
Most instances of the Eurasian Watermilfoil and the Variable-Leaf Watermilfoil occurred 
the farthest from shore at about 0.5 meters.

Figure 3. Number of occurrences of species based on depth (the x-axis represents the depth in meters, while 
the y-axis represents occurrences of species.)
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Figure 3 showed that most Asian Clam and spiny waterflea were found around a depth of 
0. Most instances of the Eurasian Watermilfoil occurred around a depth of -5 meters, 
while instances of the Variable-Leaf Watermilfoil occurred at a depth between -5 and -10 
meters. Other, non-specified species were found to mostly occur at a depth of around -1 
meters.

Seaborn allowed for the creation of scatter plots and area charts, color-coded based on the 
five species types present in the data (seen in the key) and organized based on the 
regional features of the data (labeled on the y-axis).
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Figure 4. Visual representation using Seaborn (where distance and depth are measured in meters, hardness 
is measured in Joules/cubic meters, vegetation is measured in volume/cubic meters, and longitude and 
latitude are measured in degrees.)

From Figure 4 we can observe the relationship between specific variables and 
occurrences of the five species types observed in the study.

The Eurasian watermilfoil (blue) appeared the most in the figure, and most instances 
occurred at greater depths. It was also observed to occur closer to the shore, with most 
instances found less than 100 meters from shore.

The variable-leaf watermilfoil (orange) occurred mostly closer to the shore at areas with 
greater bottom hardness; however, there were several occurrences further from shore as 
well. The species appeared to be the most spread out.

The spiny waterflea (green) consistently appeared furthest from the shore compared to the 
other four species, over 100 meters from shore. It is also found in areas of lower 
vegetation.

The Asian clam (purple) was seen to appear in areas of high vegetation, as well as closer 
to the shore. It appeared minimally varied, with occurrences all exhibiting the same 
features.

Other species (red) seemed to have limited variation in their spread. They mostly 
appeared under 50 meters from the shore and in areas with depth near 0 and less bottom 
hardness.

Points on the graphs showing longitude and latitude can be mostly seen along two lines 
(-75 and -73.5 degrees longitude and 43.4 and 43.8 degrees latitude) due to the twelve 
lakes being located closely along those longitudes and latitudes. As a result, not much 
information can be obtained solely by looking at the longitude and latitude.

3. Discussion

Being able to accurately predict the probability of occurrence of invasive species in a 
particular region is very important for developing efficient management and prevention 
strategies. In this study, three AI models were used to predict the probability of 
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occurrence, and their accuracies were compared.

Based on the results gathered from each model, the random forest model performed with 
the highest unbalanced accuracy at 99.35%, with NaN values excluded, and 95.20% with 
NaN values included. Logistic regression and Gaussian NB models’ unbalanced, NaN-
excluded accuracies were slightly lower at 98.12% and 96.14%, respectively; 
furthermore, their balanced models were also lower at 80.80% and 95.16%, respectively. 
Thus, the random forest model consistently performed slightly better than both the 
logistic regression and Gaussian NB models.

Despite this, it is important to note that a model that could predict accurately with NaN 
values included would be the most useful in forecasting occurrences of invasive species, 
as there may be numerous locations in a region where no species occurs. Looking at the 
accuracies of the three models trained with NaN values included, we can see that, while 
the random forest model predicted a high unbalanced accuracy of 95.20%, its balanced 
accuracy was much lower at 35.11%. The logistic regression model predicted much lower 
as well, with a 36.36% unbalanced and 50.56% balanced score, respectively. The 
Gaussian NB model performed with the lowest accuracy unbalanced at 29.18%; however, 
it performed with the highest balanced accuracy at 81.23%.

Balanced accuracy score is a further development on the standard accuracy metric where 
it's adjusted to perform better on imbalanced datasets which is the case for this research. 
The way it does this is by calculating the average accuracy for each class, instead of 
combining them as is the case with standard accuracy.

Balanced accuracy scores are better signifiers of accuracy than unbalanced scores as they 
are less prone to overfitting or underfitting (which occurs when the models become too 
specialized and make biased predictions favoring a label over others in the dataset). An 
unbalanced accuracy score with our database, for example, would overfit and put more 
emphasis on predicting a species such as variable-leaf watermilfoil rather than the Asian 
clam due to there being far more instances of the former in the data: 73,525 instances of 
variable-leaf watermilfoil versus 149 instances of Asian clam. Therefore, a balanced 
accuracy score would be more useful in prediction than an unbalanced one.

As a result, I look at the best-performing model that has the highest balanced accuracy 
score with all NaN values included. This makes Gaussian NB the ideal method with an 
81.23% accuracy among the three tested models when making species predictions based 
on the locational data provided.

4. Data and Methods
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4.1. Area of Interest

The study area included twelve lakes in the Adirondack region in Upstate New York 
(Figure 1).
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Figure 1. Area of interest

4.2. Species

Four species in the twelve lakes were chosen in this research based on their spreading 
speed and management agency concerns. These four species include two plants and two 
invertebrates: Variable Leaf Milfoil, Eurasian Watermilfoil, Spiny water fleas, and Asian 
clam.

Variable Leaf Milfoil (Myriophyllum Heterophyllum) (VLM) is a submerged aquatic 
plant with fine, feather-like leaves whorled around a main stem. VLM is native to the 
Southeastern and Midwestern United States. It was first observed in New England in 
Bridgeport, Connecticut in 1932 and is now widely distributed across the New England 
States. Variable milfoil grows in both still and flowing waters in a variety of substrates at 
depths from 1 to 5 meters.

Variable leaf milfoil can cause numerous ecological, cultural, and economic impacts. 
VLM spreads quickly via fragmentation and can easily displace beneficial native aquatic 
plants. Dense beds of variable leaf milfoil degrade water quality for numerous species of 
fish and wildlife. In large mats, dissolved oxygen levels can be reduced to zero, making 
the area completely uninhabitable to game fish. Thick growths of VLM can impede 
fishing, swimming, and boating, thus indirectly impacting tourism and the economic 
activity of lake towns.

Eurasian Watermilfoil (Myriophyllum spicatum) is a submersed, rooted aquatic plant 
native to Europe, Asia, and northern Africa. It was first reported in the United States in 
the 1880s17 (Eiswerth et al. 2000). The plants are rooted at the lake bottom and grow 
rapidly creating dense beds and canopies. They typically grow in water 1 to 4 meters (3.2 
to 13 feet) deep, but have been found in water as deep as 10 m (32.8 ft). Stem densities 
can exceed 300/m2 (359/yd2) in shallow water.

The widespread of Eurasian Watermilfoil could cause both ecological and economic 
damage. The introduction of Eurasian watermilfoil can result in native macrophyte 
diversity and abundance declines. Eurasian watermilfoil beds form dense canopies at the 
water surface thereby reducing light penetration early in the season before native 
macrophytes have reached their full growth, shading them out and slowing/reducing 
growth potential. Milfoil-infested lakes tend to have reduced fish spawning areas and 
lowered fish growth rates. Besides, the negative impacts on wildlife and fish populations 
in water bodies with high densities of Eurasian watermilfoil and the difficulty of motor 
boating and swimming in infested areas result in recreation-oriented financial losses and 
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the depreciation of shoreline property values.

Spiny Waterflea (Bythotrephes longimanus) is native to Europe and Asia. The species 
was unintentionally introduced into the United States' Great Lakes through the discharge 
of contaminated cargo ship ballast water. They were first discovered in Lake Huron in 
1984; established in all of the Great Lakes by 198718 (Cullis 1988). Spiny waterfleas live 
in freshwater habitats and prefer cold temperatures, but can tolerate both brackish and 
warm water. Spiny waterfleas spread by attaching to fishing lines, downriggers, anchor 
ropes, and fishing nets and hitch a ride to other bodies of water.

Spiny waterfleas negatively impact native fish populations, aquatic habitats, and sports 
fishing. Spiny waterflea can clog eyelets of fishing rods and prevent fish from being 
landed. They also prey on native zooplankton, including Daphnia, which are an important 
food source for native fishes. In some lakes, spiny waterfleas can cause the decline or 
elimination of some species of native zooplankton.

Asian Clam (Corbicula fluminea) is native to the fresh waters of eastern and southern 
Asia. It was likely introduced to the West Coast of North America around 1930, initially 
assumed to have been imported as a food source for the immigrating Chinese population 
(USACE ERDC 2007). Live Asian clams were first detected in US waters in 1938 in the 
Columbia River, Washington; the species quickly spread across the continent and is 
currently found in 44 states.

The Asian clam is an invasive freshwater clam that prefers sandy lake bottoms and can be 
found at the sediment surface or slightly buried. Asian clams multiply rapidly and 
populations can easily reach high densities in freshwater. Asian clams are filter feeders, 
which means that they take in lake water and strain out algae. At high densities, Asian 
clams can out-compete other native filter feeders (such as fish, mussels and aquatic 
insects) for available food. Asian clams have played a role in the decline of many 
freshwater clams and mussels, reducing native biodiversity. Shells of large populations 
may also clog intake pipes of power and water facilities.

4.3. Data

I used data from Adirondack Research Invasive Species Mapping on LILA BC (Labeled 
Information Library of Alexandria: Biology and Conservation). The data set contains 
interpolated lake characteristics data of twelve lakes in the Adirondack region, Upstate 
New York, including depth, substrate hardness, and vegetation presence. This data is 
useful for calculating the probability of occurrence of other biological organisms that 
have habitat preferences related to factors such as water depth, vegetation, and substrate.

I obtained 5,769,518 instances of data, collected from a period of 24 months between 
2018 to 2019. Of this data, there were 73,525 instances of Variable-Leaf Watermilfoil, 
18,193 instances of Eurasian watermilfoil, 1,627 instances of Spiny Waterflea, 149 
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instances of Asian clam, and 984 instances of other unidentified species. All remaining 
instances were NaN values which did not include any species.

In order for the data to be usable in logistic Machine learning algorithms, we 
preprocessed the raw data and cleaned it by removing all NaN values in the dataset. I 
also dropped survey dates, removed duplicate data points, and used encoding techniques 
to convert non-numerical data to numerical data. The data was then randomly split into 
training and testing sections with 70% of the data used for training and 30% of the data 
used for testing. By training our models on data that only included instances of species, 
we were able to obtain predictions with higher accuracy, as the models would predict 
NaN values had they been trained with NaN values included.

This data set contains the following interpolated lake characteristics data of twelve lakes: 
Distance from shore (feet), Depth (feet), Bottom Hardness (relative units), Vegetation 
(relative units, indicating vegetation height), Longitude, and Latitude.

4.4. Algorithms

I selected three machine learning algorithms and compared their prediction accuracies: 
Random Forest (RF), Logistic Regression, and Gaussian Naive Bayes. With these 
models, the features (location input) I used were: Distance from shore, Depth, Bottom 
Hardness, Vegetation, Longitude, and Latitude. The labels (species output) that the model 
tried to predict were: Variable-leaf watermilfoil, Eurasian watermilfoil, Spiny waterflea, 
Asian clam, Other (any other species), and NaN (no species).

Random Forest Classifier
Random forests or random decision forests is an ensemble learning method for
classification, regression and other tasks that operates by constructing a multitude of
decision trees at training time. For classification tasks, the output of the random forest is 
the class selected by most trees.

Random Forest algorithm is a supervised learning algorithm used in classification and 
regression problems, based upon decision trees. It is a way of constructing and then 
averaging multiple decision trees, as well as correcting the overfitting that often occurs 
when using a decision tree because of which, it generally yields more accurate results. 
Random forests are frequently used in business models due to their ability to make 
predictions based on a wide range of data.

A decision tree algorithm follows a hierarchical, tree-like model in order to make 
predictions. Based on significant features, trees can also be split into subtrees. A tree 
consists of several parts: root, internal, and leaf nodes, as well as branches. Root nodes 
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are the starting points of the tree. Internal nodes are used to make decisions based on 
specific criteria and have multiple branches. Leaf nodes are the final output of decisions 
at the bottom of the tree. Branches are connections in the tree between nodes. In order to 
make predictions, the model starts from the root node and follows the branches and leaf 
nodes, making decisions based on criteria in the tree.

Logistic Regression:

Logistic regression is an algorithm based on the logistic function that predicts the 
relationship between two data factors. This algorithm is particularly useful in predicting 
two or more values using features that do not have a linear relationship.

It is frequently used in machine learning, especially within the medical field. Previously it 
has been used in medical scales to assess the severity of a patient’s condition, or in 
detecting the risk of diseases.

The equation for logistic regression is:

Y = 1/(1 + e^ –(𝛽0 + 𝛽1x1 + … + 𝛽nxn))

Where Y is the value we are predicting, the x values are the inputs—feature vectors, and 
each 𝛽 is a coefficient.  

Using the logistic function

P(x) = 1/(1+e^Y)

For multi-target models, variables such as X, Y, etc. are used similarly to how they appear 
in a linear regression model. The logistic function can be used as an activation function to 
predict the probability of the label.

There are mainly three types of Logistic Regression:

Binomial: Binomial logistic regression has a dichotomous dependent variable. It means 
there can be only two possible types of dependent variables, such as 0 or 1, Yes or No, 
etc.
Multinomial: Multinomial logistic regression extends the approach for situations where 
the independent variable has more than two categories. Multinomial logistic can be 
applied to either ordered or unordered outcomes, such as "cats", "dogs", or "sheep".
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Ordinal: In contrast with multinomial, ordinal logistic is only for ordered outcomes, such 
as "low", "Medium", or "High".

Gaussian Naive Bayes Classifier
Gaussian Naive Bayes (GNB) is a classification technique used in Machine Learning 
based on the probabilistic approach and Gaussian distribution. Gaussian Naive Bayes 
assumes that each parameter (also called features or predictors) has an independent 
capacity of predicting the output variable. Bayes’ theorem states the following 
relationship, given class variable y and dependent feature vector x1 through xn

       P(y|x1, …, xn) = (P(y) * P(x1, …, xn|y))/P(x1, …, xn )

Using the naive conditional independence assumption that

      P(xi|y) = P(xi|y, x1, …, xi - 1, xi + 1, …, xn)

we can use the Maximum A Posteriori (MAP) estimation to estimate P(y) and P(x i|y). The 
former is then the relative frequency of class y in the training set.

After using the database to train each respective model, results were calculated regarding 
the accuracy of the model’s predictions. The accuracy of the models was calculated using 
the mean square error (MSE). The MSE is calculated through taking the absolute value of 
the square of the differences between each predicted value and the correct value, finding 
the sum, then dividing it by the total number of values.

The equation for the MSE is

Using the MSE, we could find the percentage of our models’ predictions that were 
correct.

My models were tested with unbalanced (sometimes called imbalanced) data. Unbalanced 
data indicates that the amount of data points accessible for each class varies. For example, 
if there are two classes, balanced data means 50 percentage points for each class. Slight 
imbalance is not a concern for most Machine Learning approaches. As a result, if one 
class has 60% of the points while the other has 40%, there should be no noticeable 
performance reduction. Only when the imbalanced datasets of machine learning are 
extreme (i.e. 90% for one class and 10% for the other), would typical optimization 
parameters or performance metrics be ineffective and require adjustment. The dataset 
used in this research was considered unbalanced. For example: there were 73,525 
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instances of Variable-Leaf Watermilfoil, but only 149 instances of Asian clam.

5. Conclusion

The objective of this study has been to forecast the likelihood of invasive species 
occurrence through the utilization of various AI models. I constructed three models using 
random forest, logistic regression, and Gaussian NB. In the study, it is evident that AI 
models serve as robust instruments for accurately predicting the probability of invasive 
species occurrences. Among the triad of models evaluated, Gaussian NB stands out with 
the greatest potential as an invaluable resource for steering proactive management and 
conservation endeavors.

6. Limitations and Future Work

My study is not without limitations:

(1) Machine learning depends on labeled data, but accessing such data in biology and 
conservation is a challenge. Due to using a single database, there are limitations in the 
way my models have been trained. For instance, one algorithm may perform better for a 
smaller dataset than another; and  

(2) all my species study areas are confined to the Adirondack region in Upstate NY. For 
future work, I would apply algorithms in more species and in more geographical 
conditions with differently distributed features; and

(3) the data was gathered in a two-year time span from 2018 to 2019, making it limited 
when taking into account how populations change over a longer period of time. Taking 
population numbers in a small time frame means the models may make unreliable 
predictions when used to predict species several years from now.

Acknowledgments

I thank Keerthana Gurushankar, a Computer Science PhD student at Carnegie Mellon 
University, for her mentorship, invaluable advice, and constant guidance.

18



References

1.M. Vilà, J. L. Espinar, M. Hejda, P.E. Hulme, V. Jarošík, J.L. Maron, P. Pyšek, 
Ecological impacts of invasive alien plants: A meta-analysis of their effects on species, 
communities and ecosystems. Ecology Letters. 14, 702–708 (2011).
https://doi.org/10.1111/j.1461-0248.2011.01628.x

2. L. Pejchar, & H. A. Mooney, Invasive species, ecosystem services and human well-
being. Trends in Ecology and Evolution. 24, 497–504 (2009).
https://doi.org/10.1016/j.tree.2009.03.016

3. C. R. Largiadèr, Hybridization and introgression between native and alien species. In: 
Nentwig W. (eds) Biological Invasions. Ecological Studies (Analysis and Synthesis). 193. 
Springer, Berlin, Heidelberg. (2008) doi:https://doi.org/10.1007/978-3-540-36920-2_16. 
[Crossref], [Google Scholar]

4. S. Kumschick, M. Gaertner, F. Vilà, J.M. Essl, P. Jeschke, A. Pyšek, S. Ricciardi, T.M. 
Bacher, J.T.A. Blackburn, T. Dick, P.E. Evans, I. Hulme, A. Kühn, J. Mrugała, W. Pergl, 
D. M. Rabitsch, A. Richardson, M. Sendek. Winter, Ecological impacts of alien species: 
quantification, scope, caveats, and recommendations. BioScience. 65, 55–63 (2015).

5. L.R. Lazzaro, G. Bolpagni, R. Buffa, M. Gentili, A. Lonati, A.T. Stinca, R. Acosta, et 
al., Impact of invasive alien plants on native plant communities and Natura 2000 habitats: 
State of the art, gap analysis and perspectives in Italy. Journal of Environmental 
Management. 274,111-140 (2020). doi: https://doi.org/10.1016/j.jenvman.2020.111140. 
[Crossref], [PubMed], [Web of Science ®], [Google Scholar]

6. D.M. Viciani, D. Vidali, R. Gigante, M.  Bolpagni, A.T.R. Villani, R. Acosta, et al., A 
first checklist of the alien-dominated vegetation in Italy. Plant Sociology. 57(1), 29–54 
(2020).       doi: https://doi.org/10.3897/pls2020571/04. [Crossref], [Google Scholar]

7. A. Ricciardi, and H. J. MacIsaac, Recent mass invasion of the North American Great 

19



Lakes by Ponto-Caspian species. Trends in Ecology & Evolution. 15, 62–65 (2000).

8. J. Cucherousset, and J. D. Olden, Ecological impacts of nonnative freshwater fishes. 
Fisheries. 36, 215–230 (2011).

9. B.D. Leung, M. Lodge, D. Finnoff, J. F. Shogren, M. A. Lewis, and G. Lamberti, An 
ounce of prevention or a pound of cure: Bioeconomic risk analysis of invasive species. 
Proceedings of the Royal Society of London Series B: Biological Sciences. 269, 
2407–2413 (2002).

10. K.S. Pagnucco, G. A. Maynard, S. A. Fera, N. D. Yan, T. F. Nalepa, and A. Ricciardi, 
The future of species invasions in the Great Lakes-St. Lawrence River basin. Journal of 
Great Lakes Research. 41, 96–107 (2015).

11. A. M. Kramer, G. Annis, M.E. Wittmann, W. L. Wittmann, R. Chadderton, S. 
Edward, D.M. Lodge, L. Mason, Lacey, D. Beletsky, C. Riseng, J.M. Drake. Suitability of 
Laurentian Great Lakes for invasive species based on global species distribution models 
and local habitat https://doi.org/10.1002/ecs2.1883 (2017)

12. A.Sabat-Tomala, E. Raczko, and B. Zagajewski. Comparison of support vector 
machine and Random Forest Algorithms for invasive and expansive species classification 
using airborne hyperspectral data. Remote Sensing. 12 no. 3, 516 (2020). 
https://doi.org/10.3390/rs12030516

13. G. De’ath, and K. E. Fabricius, Classification and regression trees: a powerful yet 
simple technique for ecological data analysis. Ecology. 81, 3178–3192 (2000).

14. B.M. Steele, Combining multiple classifiers: an application using spatial and remotely 
sensed information for land cover mapping. Remote Sensing of Environment. 74:545–556 
(2000).

15. A. Guisan, and W. Thuiller, Predicting species distribution: offering more than simple 
habitat models. Ecology Letters. 8, 993–1009 (2005).

16. L. Breiman, J. H. Friedman, R. A. Olshen, and C. J. Stone, Classification and 
regression trees. Wadsworth and Brooks/Cole, Monterey, California, USA. 1984.

17. M.E. Eiswerth, S.G. Donaldson, and W.S. Johnson, Potential environmental impacts 
and economic damages of Eurasian watermilfoil (Myriophyllum spicatum) in western 
Nevada and northeastern California. Weed Technology. 14(3), 511-518 (2000).

18. K.I. Cullis, and G.E. Johnson, First evidence of the cladoceran Bythotrephes 
cederstroemi Schodler in Lake Superior. Journal of Great Lakes Research. 14(4), 
524-525 (1988).

20



Appendix A

Dataset used in this research come from surveys for the following twelve lakes in Upstate 
NY :

Lake Name County Township
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Loon Lake, Warren County, Piercefield

Hadlock Pond, Washington County, Fort Ann

Little Wolf Pond, Franklin County, Tupper Lake

Long Lake, Oneida County, Forestport

Sixth Lake, Hamilton County, Inlet

East Stoner Lake, Hamilton County, Arietta  

Long Pond, St. Lawrence County, Piercefield 

Clear Pond St. Lawrence County, Parishville

Horseshoe Pond, St. Lawrence County, Piercefield

Fifth Lake, Hamilton County, Inlet 

Clear Pond Lewis County, Croghan 

Courtney Pond, Essex County, North Hudson 
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Appendix B

Technical skills

The AI model utilized in the study was created using the Python programming language 
and related Python libraries. The model was coded in JupyterLab and the libraries used in 
the project were Pandas, Scikit-Learn, Matplotlib, and Seaborn.

Pandas is a Python data analysis library. The data referenced in the project was stored in a 
comma-separated values (CSV) file, which was then able to be read by importing and 
calling the Pandas library.

Scikit-Learn is a Python machine learning library that features multiple classification, 
regression, and clustering algorithms. It allows for the easier training and integration of 
various machine learning algorithms, which were used in the study to train the various 
models.

Matplotlib is a Python visualization library that allows for the embedding of various 
plots. It is used alongside a dataset in order to provide 2D and 3D visualizations of the 
data in graphs such as line plots, histograms, contour plots, and scatter plots.

Seaborn is another Python visualization library for plotting statistical graphs based on 
data. It offers a visualization between variables though various types of plots such as 
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distribution and relational plots.
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